

HANCOCK COAL PTY LTD

Calibre Rail Alpha Coal Project - Rail Phase 1B

Detailed Floodplain Study Belyando River / Native Companion Creek

HC-CRL-24100-RPT-0130 CJVP10007-REP-C-011

MASTER COPY

		N.S.	of (fr)			•
0	Issued for Use	J. Mansfield	G. Boytar	S. Ariyaratham	J. Bryce	- Nov 2011
D	Re-issued for Client Review	J. Mansfield	G. Boytar	S. Ariyaratnam		Nov 2011
С	Re-issued for Internal Review	J. Mansfield				Nov 2011
В	Issued for Client Review	J. Mansfield	G. Boytar	S. Ariyaratnam		Oct 2011
Α	Issued for Internal Review	J. Mansfield				Oct 2011
Rev	Description	Author	Checked	Approved	Authorised	Date

Document No:

Revision No:

Issue Date: Page No:

i

CONTENTS

1.0	PURF	POSE		1
2.0	PROJECT BACKGROUND1			
3.0	REFERENCES, CODES AND STANDARDS			
4.0	ABBR	REVIATIONS	5	4
5.0	INTR	ODUCTION		4
	5.1	Floodplain	Location and Description	4
	5.2	Native Con	npanion Creek	6
	5.3	Belyando F	River	6
6.0	COM	MUNITY CO	NSULTATION	6
7.0	BANK	Kable Feas	IBILITY STUDY	6
	7.1	Design Crit	teria	6
	7.2	Design Pro	cess	7
8.0	FLOODPLAIN MODELLING DESIGN CRITERIA8			8
9.0	DETA	AILED FLOO	DPLAIN ANALYSIS	9
	9.1	Introductio	on	9
		9.1.1	Hydrology	9
		9.1.1.1	Previous hydrology	9
		9.1.1.2	Additional Information	10
		9.1.1.3	Flood Frequency Analysis	11
		9.1.1.4	RORB Analysis	13
		9.1.2	Hydraulic Modelling	16
		9.1.2.1	MIKE Flood Model	17
		9.1.3	Sensitivity Testing	21
10.0	LANE	DHOLDER CO	ONSULTATION OUTCOMES	25
	10.1	Floodplain	Drainage Structure Recommendations	26
	10.2	Results		28
11.0	CON	CLUSION		30
APPEND	IX A F	FA ANALYS	SIS	31
APPEND	IX B F	RORB RESU	LTS	32
APPEND	IX C F	LOOD MAP	S	33

1.0 PURPOSE

The purpose of this report is to analyse and assess the impact of the Alpha Coal Project (ACP) railway line as it traverses the Belyando River/Native Companion Creek floodplain system. The analysis provides recommendations of the cross-drainage infrastructure required to minimise impacts to existing flowpaths and to meet the conditions set in the Environmental Impact Study (EIS) and the Supplementary Environmental Impact Study (SEIS).

This report provides details of the floodplain analysis undertaken for the Belyando River and Native Companion Creek systems. It details the pre- and post-development inundation extents for the 5, 50 and 100 year Average Recurrence Interval (ARI) events. The results for depths of flow, velocity fields and afflux from the development of the railway have been assessed for the approved design criteria of the 50 year ARI event.

2.0 PROJECT BACKGROUND

Hancock Coal Infrastructure Pty Ltd (HCIPL) are undertaking an investigation into the development of a 30 Mtpa open pit, thermal coal mine within the Galilee Basin 50km north of the Alpha township in central Queensland. This project is known as the Alpha Coal Project (ACP). A project overview can be seen in Figure 1.

As part of this project, a 500km standard gauge rail alignment and its associated infrastructure is required to transport the coal from the mine, at Alpha, to the port, at Abbot Point, north of Bowen. Calibre has recently completed the Bankable Feasibility Study (BFS) for the rail alignment and is continuing to progress the identified critical path detail design activities.

Subsequent to this, an EIS has been prepared and corresponding SEIS compiled to clearly define design parameters to be adhered to in any further investigations, and eventually, design.

Part of the stakeholder response to the EIS identified specific concerns that were raised in relation to the drainage criteria approved by Hancock Coal in the BFS. The SEIS has taken into account these concerns and the drainage criteria updated to address the issues raised in the EIS. This Detail Floodplain Study takes into account these changes in the drainage criteria developed for the SEIS.

Figure 1: Proposed Alpha Coal Railway Alignment

3.0 **REFERENCES**, CODES AND STANDARDS

The following reports and codes were used as part of the floodplain modelling:

- BFS Drainage Engineering Report (CJVP10007-REP-C-001/ HC-CRL-24100-RPT-0022);
- Queensland Government Climate Change Guidelines: Increasing Queensland's resilience to inland flooding in a changing climate (2010);
- Australian Rainfall and Runoff (AR&R);
- C&R land holder consultation;
- EIS and SEIS.

The following data sources were used for the hydrologic and hydraulic modelling:

- Department of Environment and Resource management (DERM) blended topographic survey data (Shuttle Radar Topography Mission (SRTM) and combined contour data);
- LiDAR data for current alignment (600m wide corridor with a vertical accuracy of ±100mm) provided by HCIPL;
- LiDAR data flown for BFS alignment (1600m wide corridor with a vertical accuracy of ±500mm) provided by HCIPL;
- LiDAR Flood Study data provided by HCIPL (vertical accuracy of ±500mm);
- DERM stream-gauge historical data;
- Bureau of Meteorology (BoM) Intensity-Frequency-Duration (IFD) regional data.

Document No:

Revision No: Issue Date:

Page No:

4.0 ABBREVIATIONS

1.00		
ACP	Alpha Coal Project	
AEP	Average Exceedance Probability	
AR&R	Australian Rainfall and Runoff	
ARI	Average Recurrence Interval	
BFS	Bankable Feasibility Study	
BoM	Bureau of Meteorology	
C&R	C&R Consulting Pty Ltd	
CatchmentSIM	Hydrologic catchment delineation program	
CSP	Corrugated Steel Pipe	
DERM	Department of Environment and Resource Management	
EIS	Environmental Impact Statement	
FFA	Flood Frequency Analysis	
HCPL	Hancock Coal Pty Ltd	
HCIPL	Hancock Coal Infrastructure Pty Ltd	
IFD	Intensity-Frequency-Duration	
Lidar	Light Detection and Ranging	
RORB	Rainfall and runoff routing program	
SEIS	Supplementary Environmental Impact Statement	
SRTM	Shuttle Radar Topography Mission	
TOF	Top of Formation	

5.0 INTRODUCTION

The proposed rail alignment for the ACP currently crosses the Belyando-Native Companion floodplain. The analysis was conducted for this system during the BFS and identified that further detailed hydraulic analysis was required due to the complex floodplain interaction that exists between the two systems. More accurate LiDAR along the alignment, Landholder consultation and extended historical stream-gauge records were all incorporated into this study.

The primary output of the Detailed Floodplain Study was to provide detailed mapping of the pre- and post-development flood extents, inundation durations, flow velocities and afflux predictions for the Native Companion - Belyando system. Of particular interest in this study was to assess the impacts that the proposed rail alignment would have on the existing surrounding environment and Landholders.

5.1 Floodplain Location and Description

The Native Companion-Belyando system has a combined catchment area of 10,750km² and is a major portion of the Belyando Sub-Basin (35,000km²) in the Burdekin River Catchment. The terrain is predominantly very flat with vast floodplains, primarily used for grazing on natural pastures. The landscape is semi-arid with predominantly ephemeral streams (typically flow each year during the wet season between December and April).

A locality plan of the affected catchments that interface with the Alpha Coal Railway is illustrated in Figure 2.

Rev 0

5

ABBOT POINT

Page No:

Figure 2: Belyando River-Native Companion Creek Catchments

5.2 Native Companion Creek

Native Companion Creek has a contributing catchment area of approximately 5,125km² at the proposed ACP rail alignment interface (Rail Chainage 38,690m). The catchment is undeveloped (with the exception of Alpha township) and consists of mostly pastoral land. The main channel is well defined and sits relatively higher than the adjacent Belyando River. Anecdotal evidence from Landholders suggests that the Creek breaks out under events upstream of the proposed railway and becomes part of the Belyando River system.

5.3 Belyando River

The catchment area of the Belyando River at the proposed ACP rail alignment (Rail Chainage 44,000m) is approximately 5,625km². The catchment is undeveloped and consists of mostly pastoral land. The main channel consists of many braids and does not have a major defined flow path. As such, during flood events, a complex interaction between channel and floodplain flows occur.

The confluence of Native Companion Creek and the Belyando River occurs approximately 15km downstream of the proposed railway.

6.0 COMMUNITY CONSULTATION

As part of the Detailed Floodplain Study, community consultation was undertaken to correlate the current modelling to the historical knowledge of stakeholders in relation to individual floodplains. The feedback received was then incorporated into the modelling where appropriate. Additional details can be found in Section 10.

7.0 BANKABLE FEASIBILITY STUDY

Prior to this detailed floodplain analysis, Calibre undertook a BFS level design of all drainage structures on the proposed ACP rail alignment, details of which are summarised in the BFS Drainage Engineering Report (CJVP10007-REP-C-001 / HC-CRL-24100-RPT-0022). The design proposed in the BFS report was used as the basis for the analysis detailed in this study.

7.1 Design Criteria

The approved drainage design criteria for the BFS are specified in Tables 1 and 2.

Design Aspect	Design Criteria		
Culvert Classification	Major culverts: culvert locations with a 50 years ARI design flow \geq 50 m³/sec.		
	Minor culverts: culvert locations with a 50 year ARI design flow $< 50 \mbox{ m}^3/\mbox{sec.}$		
Design Flood	Minor culverts shall pass the 20 year ARI design event flow.		
	Major culverts shall pass the 50 year ARI design event flow.		

Table 1: General Drainage Design Criteria

Revision No:

Issue Date: Page No: HC-CRL-24100-RPT-0130 CJVP10007-REP-C-011 Rev 0 November 2011 7

Design Aspect	Design Criteria
Freeboard	Min. 300mm to the formation surface for design event.
Headwater	Max. headwater to be 1.5 x culvert diameter.
Max. Outlet Velocity	5.0m/sec for design event with appropriate scour protection.
Scour Protection	Capable of passing 20 years ARI design flood without damage. Rock sizing to be designed in accordance with AUSTROADS Waterway Design, 1994.
Culvert Type & Size	CSP (galvanised corrugated steel pipes).
	CSP Culverts shall be provided with minimum 600mm earthwork cover.
	Min. diameter to be 900mm for engineering culverts.
Diversion drains	Unlined diversion drains shall be used to divert catchment flows from one catchment to another, where culverts cannot be used through the rail formation. These should cater for the 20 year ARI design flood without overtopping or scour. Drain design should minimise drain scour for the design event.
Cut off drains	Unlined cut off drains (with a minimum 20 year ARI design flow capacity) should be provided on the upstream side of the railway in cuttings to prevent surface water runoff entering the cuttings and causing scour and washouts.
Levees	Designed to ensure that there is 100mm freeboard above the culvert headwater design level.

Table 2: Bridge Hydraulic Design Criteria

Design Aspect	Design Criteria
Design Flood	Bridges shall pass the 50 year ARI design event flow.
Freeboard	Min. 500mm to bridge soffit for 50 year ARI design flow.
	Min. 300mm to Top Of Formation (TOF) (embankments and guide banks) for 50 year ARI design flow.
Max Velocity	3.8m/s to allow for the adoption of a practical limit of 1 tonne rock class protection for economy.
Scour Protection	Provide rock protection to cater for 50 year ARI design flow velocities. Rock sizing to be designed in accordance with AUSTROADS Waterway Design, 1994.
Maximum afflux	1.5m with reduction at sensitive locations.
Guide banks	To be designed in accordance with AUSTROADS Waterway Design, 1994.

7.2 Design Process

Hydrologic and hydraulic modelling was completed for all drainage structures along the ACP alignment during the BFS. For major crossings, design flows were estimated using either the rational method, a preliminary hydrologic model (CatchmentSim and RORB) or a Flood Frequency Analysis (FFA) where stream-gauge data was available. Design flows were then selected based on the best information available at the time of the study and what method was considered most appropriate for the level of analysis required for the BFS.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal – BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.doc

These flows were then hydraulically modelled depending upon the proposed structure type:

- Culverts were analysed using HY-8 (a 1-D modelling program design for culvert analysis) and sizes were determined to ensure afflux was less than 1.5m or the equivalent to the upstream bridge water levels determined from bridge modelling.
- Bridges were assessed using Afflux (a 1-D bridge hydraulic modelling program) to determine span widths that allowed less than 1.5m of afflux (as per the original design criteria). Supplementary culverts for the bridge were sized if the proposed bridge structure was not able to pass flows within the allowable afflux limits.

This level of analysis was sufficient for the purposes of the BFS and was used as a basis for the Detailed Floodplain Study.

8.0 FLOODPLAIN MODELLING DESIGN CRITERIA

A Supplementary Environmental Impact Statement (SEIS) was prepared after the conclusion of the BFS and this resulted in certain design criteria (from Table 1 and Table 2) being modified to meet stakeholder requirements. Table 3 shows the modified drainage design criteria adopted for the Detailed Floodplain Modelling.

Design Aspect	Design Criteria		
Design Flood	Acceptable increases in inundation extent (above the existing conditions for a given return period to the 50 year ARI event) will be proposed where such an increase will not alter rural land use and result in significant impacts.		
Inundation Duration	Inundation duration not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.		
Max Velocity	Bridge outlet velocity = maximum of 1.2 x existing velocity at a distance equal to the bridge span downstream of bridge.		
	Culverts outlet velocity:		
	= 1.5m/s where erodible soils are present.		
	= 2.5m/s for normal soils (with no erosion control).		
Maximum afflux	Maximum 0.5m – normally (unless justifiable).		
	Maximum 0.2m – around critical infrastructure.		
	Maximum 0.1m – around dwellings.		

 Table 3:
 Modified Drainage Design Criteria

Unless specified in Table 3, the design criteria used for the detailed floodplain analysis are identified in Table 1 and Table 2.

9.0 DETAILED FLOODPLAIN ANALYSIS

9.1 Introduction

In order to assess the impacts that the proposed ACP rail will have on the Belyando River-Native Companion Creek floodplain, a detailed floodplain analysis was conducted on the system. This detailed analysis was then used to assess the adequacy of the proposed cross-drainage structures determined from the BFS.

A detailed hydrologic analysis was completed for both systems and a combined hydraulic model that covers the area of interest, within the floodplain, was developed. The modelling results were then used to assess impacts on inundation extents, time of inundation, afflux and velocities as a result of the ACP railway. From the results of the hydraulic modelling, detailed flood mapping has been produced.

The following sections outline the methodology used to derive the required outputs for the Detailed Floodplain study.

9.1.1 Hydrology

9.1.1.1 Previous hydrology

During the BFS, the hydrology for both Native Companion Creek and Belyando River were based on RORB models and a Flood Frequency Analysis (FFA) of the Native Companion Creek stream-gauge (120305A - Native Companion Creek at Violet Grove). At the time of the analysis, the stream-gauge had 37 years of recorded data (daily streamflow readings from 1968 to 2005). The estimated 50 year ARI event flow was used for the sizing of the Native Companion Creek cross-drainage structure.

It should be noted that the stream-gauge is located a significant way upstream of the ACP railway as shown in Figure 3 below.

Revision No:

Issue Date:

Figure 3: Native Companion Creek stream-gauge

Due to the similarities in the catchment characteristics between Native Companion Creek and Belyando River, a direct comparison was adopted from the Native Companion Creek FFA. As the Belyando River has a larger catchment, the estimated 50 year ARI event flows was increased via a catchment area ratio.

For full details on the BFS analysis, refer to the BFS Drainage Engineering Report (CJVP10007-REP-C-001/ HC-CRL-24100-RPT-0022).

9.1.1.2 Additional Information

As a result of the additional flooding information that was obtained from Landholder consultation and a floodplain field investigation (undertaken by C&R consulting), a more holistic and representative modelling approach for the floodplain system was able to be generated.

This information contained more accurate details regarding the hydrologic parameters and existing system flooding behaviour. More accurate LiDAR survey along the rail corridor was also obtained for the detailed analysis. These data sets were all incorporated as additional design inputs.

Calibre	Document No:	HC-CRL-24100-RPT-0130
Alpha Coal Project		CJVP10007-REP-C-011
Detailed Floodplain Study - Belyando River / Native Companion Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	11

The following additional data sets were made available for the Detailed Floodplain Study:

Landholder Inputs

Of key importance in this floodplain study was the identification of the break-out point of Native Companion Creek into the Belyando River. From discussions with Landholders, it was acknowledged that flows in Native Companion Creek at the proposed rail alignment were minimal and could be attributed to local runoff only. From this, it was determined that the majority of Native Companion Creek flows into the Belyando River upstream of the ACP rail alignment.

Additional Survey

Additional LiDAR was flown along the proposed rail alignment in a 600m wide corridor with a vertical accuracy of ± 100 mm. Supplementary LiDAR was provided by HCIPL for the floodplain with a vertical accuracy of ± 500 mm.

Additional Stream-Gauge Data

For the BFS hydrologic analysis, stream-gauge data up until 2005 was available for the analysis. At the time of the Detailed Floodplain Study, recorded data up until August 2011 was available. This additional recorded data included 3 of the wettest years on record. The inclusion of this data in the historical stream-gauge statistical analysis had a significant effect on the predicted peak discharges.

9.1.1.3 Flood Frequency Analysis

A Flood Frequency Analysis was completed for the Native Companion Creek stream-gauge at Violet Grove based on the methods prescribed by Australian Rainfall and Runoff (AR&R). A summary of the data set obtained from the Department of Environment and Resource Management (DERM) online database is shown below in Table 4.

Catchment	DERM stream-gauge	Years of data	Start - finish
Native Companion Creek	120305A	44	15/12/1967 – 15/08/2011

The stream-gauge has a contributing catchment area of 4065km². An annual series based on water years (1 September to 30 August) was extracted from the daily data and analysed based on a Log-Pearson III probability distribution. The results are shown below in Figure 4.

The results of the FFA are presented in Appendix A.

Document No: HC-CRL-24100-RPT-0130 CJVP10007-REP-C-011 **Revision No:** Rev 0 November 2011 12

Issue Date:

Page No:

Figure 4: Native Companion Creek stream-gauge FFA

S:\PRO-Projects\2010\CJVP10007 Alpha Coal - BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.doc

From the FFA, the following design event flows have been derived and are shown below:

Event ARI (years)	Design discharge (m ³ /s)	Upper confidence limit discharge (m ³ /s)	Lower confidence limit discharge (m ³ /s)
100	1867	4571	966
50	1224	2769	667
20	648	1310	380
10	368	677	228
5	185	308	121

Table 5:	Flood Frequency	/ Analysis event	analysis results

9.1.1.4 RORB Analysis

The contributing catchment areas for both Native Companion Creek and Belyando River were delineated using the GIS based terrain analysis software, CatchmentSim. A visual check was performed against the BFS delineated catchments, stream-gauge catchment areas and SRTM contours to ensure the CatchmentSim delineation was accurate.

Both systems were delineated in CatchmentSim using the DERM SRTM survey data as this was deemed to have sufficient accuracy for the purposes of hydrologic analyses. Catchments were generated for both systems and exported into the rainfall-runoff routing program, RORB.

A sub-catchment node was specifically placed at the location of the Native Companion Creek stream-gauge in order to calibrate the model.

A summary of the catchment analysis for Native Companion Creek and the Belyando River are shown below in Tables 6 and 7.

Item	Value
Catchment area	5124.8km ²
d _{av}	168.4km

 Table 6:
 Native Companion Creek catchment properties

Table 7: Belyando River catchment properties

Item	Value
Catchment area	5652.3km ²
d _{av}	98.44km

The RORB analysis results are contained in Appendix B.

Parameters

RORB model parameters were initially set to those recommended by AR&R for Queensland. These were then varied via a calibration exercise to achieve a best-fit for the particular catchment.

The initial parameters for the RORB model were set using the formulae outlined in AR&R guidelines for Queensland. These are shown below:

 $k_c = \ 0.88 \ A^{0.53} \label{eq:kc}$ where A is the catchment area in square kilometres

(Equation 9.1)

(Equation 9.3)

 $(k_c/d_{ave}) = -13.5 \text{ m}^3 + 45.8 \text{ m}^2 - 53 \text{ m} + 21.2$ (Equation 9.2) where d_{ave} is the average stream length from sub-catchment centroids to the catchment outlet

The RORB manual suggests that the k_c parameter is better estimated using the following formula:

 k_c = 2.2 (A^{0/5}) (Q_p/2)^{(0.8\mbox{-m})} where Q_p is the predicted peak discharge

Using the above formula (equation 9.2) as recommended by AR&R, initial catchment parameters for Native Companion Creek and Belyando River were calculated and are shown in Tables 8 and 9 along with an estimate of the initial and continuing loss in Table 10.

Table 8:	Native Companion	Creek initial	RORB parameters

Item	Value
k _c	81.4
М	1.009

 Table 9:
 Belyando River initial RORB parameters

Item	Value
k _c	85.74
М	0.983

Table 10: Initial and continuing loss estimation

Event ARI (years)	Initial loss (mm)	Continuing loss (mm/hr)
100	10	2.5
50	15	2.5
20	15	2.5
10	35	2.5
5	35	2.5

Calibration

As Native Companion Creek has a stream-gauge upstream of the proposed ACP alignment, a hydrologic calibration was able to be performed. Using the RORB model generated for the system and the adopted initial parameters as described previously, initial loss and k_c values were adjusted to achieve a best-fit for the 5, 10, 20, 50 and 100 year ARI events at the gauging station node against the stream-gauge FFA. These calibrated values are shown below in Tables 11 and 12.

Table 11: Native Companion Creek calibrated RORB parameters

Item	Value
k_c (calibrated)	130
М	1.009

Table 12: Native Companion Creek calibrated losses

Event ARI (years)	Initial loss (mm)	Continuing loss (mm/hr)
100	10	2.5
50	15	2.5
20	15	2.5
10	35	2.5
5	70	2.5

A good calibration was achieved for the 50 year ARI event (design event) with the FFA predicted a peak flow of 1224m³/s and the RORB model estimating 1204m³/s. A results comparison between the calibrated RORB model and the FFA estimates are shown below in Table 13.

Table 13:	Calibration result	s at Native Compai	nion Creek stream-gauge
-----------	--------------------	--------------------	-------------------------

Event ARI (years)	FFA estimate (m ³ /s)	RORB estimate (m ³ /s)
100	1867	1504
50	1224	1204
20	648	919
10	368	532
5	185	347

The peak discharges extracted from the RORB model have been plotted (blue circles) on the FFA provided in Figure 4.

The calibrated parameters in Tables 11 and 12 were also used for the Belyando River system due to their similar catchment characteristics and close proximity.

Results

The results extracted from the hydrologic modelling for Native Companion Creek and Belyando River systems at the ACP rail interface are shown below:

Table 14: Native Companion Creek and Belyando River peak storm durations

Event ARI (years)	Peak discharge storm duration (hours)
100	72
50	72
5	36

Table 15: Native Companion Creek predicted peak discharges

Event ARI (years)	Peak predicted discharge (m ³ /s)
100	1066
50	824
5	214

Table 16:	Belvando	River	predicted	peak	discharges
	Derganao	111001	productou	poun	alsonal gos

Event ARI (years)	Peak predicted discharge (m ³ /s)
100	1039
50	804
5	218

Full hydrographs have been extracted from the RORB model for the 5, 10, 20, 50 and 100 year ARI events are provided in Appendix B. The predicted peak discharges for both systems were then used as inflows into the Native Companion Creek and Belyando River floodplain hydraulic model as described in Section 9.1.2.

9.1.2 Hydraulic Modelling

It had been identified during the BFS that the Native Companion Creek and Belyando River floodplain system could be modelled using a quasi 2-D hydraulic model. After an initial assessment of this system using HEC-RAS (1-D unsteady hydraulic modelling package), it was identified that significant lateral flows (i.e. breakout points) and complex floodplain interactions meant that the quasi 2-D model would be insufficient to adequately model the system.

As such, a full hydrodynamic 2-D model was generated using the software package MIKE Flood. The advantage of using MIKE Flood is the program's ability to model large grid-scale features such as complex floodplains while also allowing sub grid-scale features such as culverts and bridges to be modelled with a greater degree of accuracy.

The following section outlines the process used to generate the 2-D model, sensitivity analyses conducted and modelling results.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal – BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.doc

9.1.2.1 MIKE Flood Model

Bathymetry

The hydraulic model required a significant model domain in order to adequately capture the upstream breakout points of Native Companion Creek into the Belyando River and be sufficiently downstream to reduce the effects of the downstream boundary. This resulted in a bathymetry of 1065 x 1393 cells at a grid cell size of 25m x 25m (model area of 927km²). The final bathymetry used for the pre- and post-development cases is shown in Figure 5.

A significant portion of the bathymetry has been based on a combination of LiDAR sources (flood study LiDAR, BFS LiDAR and current alignment LiDAR) and covers all of the area downstream of the railway and a minimum of approximately 2.5km upstream of the rail (varies depending on location as per the "approximate SRTM/LiDAR interface" shown in Figure 5). At the time of the Detailed Floodplain Study, the only available survey data outside of these extents was the SRTM survey. Due to the significant accuracy reduction of the SRTM in comparison to the LiDAR, it was assessed that some manipulation of the relative levels of the SRTM was needed to ensure boundary levels matched the LiDAR data at stream inverts. For this model, the SRTM tiles were lowered by 1m and a variable interpreted transition was generated between the SRTM and LiDAR boundary to provide a smoothed surface between the two data sets.

This bathymetry manipulation was considered appropriate for the purposes of the assessment of impacts from the proposed ACP rail alignment and utilised the best data available at the time of this Detailed Floodplain Study.

Document No: HC-CRL-24100-RPT-0130 CJVP10007-REP-C-011 **Revision No:** Rev 0 November 2011 18

Issue Date: Page No:

Figure 5: Hydraulic model extent

Boundary conditions

Native Companion Creek and Belyando River inflow hydrographs were input into the model over an appropriate width to ensure minimal dispersion of flows laterally during peak hydrograph inflows. The downstream boundary condition was set using a combined flow value for the system and a rating curve (discharge-height relationship) generated from the downstream cross section and average stream slope.

Initial water surface levels from the downstream boundary condition were projected back upstream to account for the loss of storage due to tailwater affects. The selection of downstream boundary levels was subject to sensitivity testing as outlined in Section 9.1.3.

Roughness coefficients

The Native Companion Creek and Belyando River systems have two distinct types of roughness: a relatively smooth and well defined flowpath for the main conveyance channels; and a rough, low velocity, low water depth floodplain. As such, two Manning's values were adopted for this Detailed Floodplain Study:

- Channel: n = 0.04
- Floodplain: n = 0.1

In order to easily and accurately define the two separate roughness areas, 5 year ARI event flows were halved and input into the hydraulic model (to simulate a bank-full stream event). Where depths exceeded 0.2m and velocities above approximately 0.15m/s, a roughness value attributed to a channel was assigned. The remaining model domain was set to a roughness equivalent to floodplain. The adopted values are shown in Figure 6. The selection of roughness values was subject to sensitivity testing as outlined in Section 9.1.3.

Document No:

Revision No: Issue Date:

Figure 6: Manning's roughness

MIKE Flood coupling

The MIKE Flood modelling package allows for the input of 1-D modelling elements (MIKE11) within the 2-D model domain (MIKE21). These links are known as 'couples'. For this Detailed Floodplain Study, bridges and culverts have been input into the model as 1-D elements to accurately assess the headloss through cross-drainage structures. All structures have been modelled implicitly with standard MIKE11 variables. Coupled locations are shown in Figure 7.

In order to maintain inundation extents post-development and as specified in the SEIS, floodplain relief culverts are proposed for the Native Companion Creek and Belyando River System at 25m spacing. These relief culverts consist of 900mm diameter Corrugated Steel Pipes (CSP). Through sensitivity testing it was determined that in order to minimise geometric grid-scale problems and minimising the required number of couples within the model, it was feasible to group 5 floodplain relief culverts from adjacent 2-D grid cells. This resulted in a grouping a 5/900mm CSP every 125m within the model.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal – BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.doc

Calibre	Document No:	HC-CRL-24100-RPT-0130
Alpha Coal Project		CJVP10007-REP-C-011
Detailed Floodplain Study - Belyando River / Native Companion Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	21

Figure 7: MIKE Flood couple locations

In addition to the floodplain relief culverts, the BFS proposed a single bridge span of 60m for Native Companion Creek and a combination of a 156m bridge and 49/ 3000mm diameter supplementary CSPs for the Belyando River. These were also inserted as couples into the MIKE Flood model.

9.1.3 Sensitivity Testing

Due to the lack of anecdotal evidence available to calibrate the hydraulic model, a sensitivity range of \pm 30% on roughness values, inflow hydrographs and downstream boundary water levels was tested. Sensitivity testing was undertaken for the 50 year ARI event and for the pre-development case only at locations shown in Figure 8.

Figure 8: Sensitivity testing locations

Eight locations were selected both upstream and downstream of the proposed railway alignment and included main channel and floodplain locations in order to assess the sensitivity of certain parameters on the predicted water levels and velocities.

Manning's values

The value of Manning's 'M' (M=1/n) was adjusted by $\pm 30\%$ to assess the impacts of this parameter on the predicted maximum inundation depths and velocities at the locations shown in Figure 8. The sensitivity of the Manning's 'M' value is shown in Table 17.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal - BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek/CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.doc

Location	Adopted value (m)	+ 30% value	Change (m)	-30% value	Change (m)
1	0.099	0.083	-0.016	0.108	0.009
2	0.713	0.509	-0.204	1.020	0.307
3	1.718	1.524	-0.194	2.023	0.305
4	2.130	1.883	-0.247	2.490	0.360
5	0.089	0.071	-0.018	0.093	0.004
6	0.716	0.533	-0.183	1.003	0.287
7	1.814	1.605	-0.209	2.136	0.322
8	2.197	1.938	-0.259	2.557	0.360

Table 17: Manning's 'M' value sensitivity (depth)

The Manning's value has an impact ranging from -260mm to +360mm on the predicted water surface level. This has an equivalent inundation extent impact of -7.6% and +8.8%. The Belyando River model shows that the predicted extents and water levels have a high sensitivity to the Manning's values selected.

At the same testing locations, the peak velocities were also extracted. From Table 18, it can be seen that there is a large change in velocity percentage. However the flow velocity change is small and remains in the same order of magnitude as the adopted existing case.

Location	Adopted value (m/s)	+30% value	Change (%)	-30% value	Change (%)
1	0.066	0.077	14.3	0.050	-24.2
2	0.166	0.167	0.6	0.154	-7.2
3	0.318	0.380	16.3	0.249	-21.7
4	0.251	0.299	16.1	0.198	-21.1
5	0.066	0.075	12.0	0.048	-27.3
6	0.187	0.194	3.6	0.168	-10.2
7	0.344	0.426	19.2	0.260	-24.4
8	0.308	0.368	16.3	0.245	-20.5

Table 18: Manning's 'M' value sensitivity (velocity)

Inflow hydrographs

The inflow values were adjusted by $\pm 30\%$ to assess the impacts of this parameter on the predicted maximum inundation depths at the locations shown in Figure 8. The sensitivity of the inflow hydrograph is shown in Table 19.

Document No:	HC-CRL-24100-RPT-0130
	CJVP10007-REP-C-011
Revision No:	Rev 0
Issue Date:	November 2011
Page No:	24

Table 19: Inflow hydrograph sensitivity					
Location	Adopted value (m)	+ 30% value	Change (m)	-30% value	Change (m)
1	0.099	0.107	0.008	0.073	-0.026
2	0.713	0.989	0.276	0.434	-0.279
3	1.718	1.989	0.271	1.456	-0.262
4	2.130	2.452	0.322	1.794	-0.336
5	0.089	0.094	0.005	0.062	-0.027
6	0.716	0.973	0.257	0.468	-0.248
7	1.814	2.102	0.288	1.534	-0.280
8	2.197	2.519	0.322	1.847	-0.350

The inflow values have an impact ranging from -350mm to +330mm on the predicted water surface level. This has an equivalent inundation extent impact of -10.6% and +7.4% The Belyando River model shows that the predicted extents and water levels have a high sensitivity to the magnitude of the predicted inflows.

Downstream boundary

The downstream boundary water surface levels were adjusted by $\pm 30\%$ to assess the impacts of this parameter on the predicted maximum inundation depths at the locations shown in Figure 8. The sensitivity of the downstream boundary is shown in Table 20.

Location	Adopted value (m)	+ 30% value	Change (m)	-30% value	Change (m)
1	0.099	0.099	0.000	0.095	-0.004
2	0.713	0.713	0.000	0.710	-0.003
3	1.718	1.718	0.000	1.715	-0.003
4	2.130	2.130	0.001	2.123	-0.007
5	0.089	0.089	0.000	0.081	-0.008
6	0.716	0.716	0.000	0.712	-0.004
7	1.814	1.814	0.000	1.809	-0.005
8	2.197	2.202	0.005	2.188	-0.009

Table 20: Downstream boundary sensitivity

The downstream boundary level has a negligible impact on the predicted water surface level.

The sensitivity analysis has shown that the magnitude of the hydraulic model inflows has the most significant impact on the predicted water surface levels within the 2-D model. Although the relative change in level is high when compared to the predicted water depth, the change in inundation extent is minimal.

For this study, conservative values for all variables have been adopted, and it is considered that the outcomes of the study are adequate without hydraulic model calibration and are conservative in nature.

10.0 LANDHOLDER CONSULTATION OUTCOMES

The initial findings and resulting flood maps from the modelling of the Belyando/Native Companion floodplain system were presented to the affected Landholders for review. The flood maps presented for review included the 5, 50 and 100 year ARI events displaying inundation extent, inundation depth, water surface elevation, velocity profiles and afflux.

Landholder feedback identified that the mapping for the 100 year ARI event underestimated inundation extents and depths seen during the 2008 flood event (approximately a 70 year event). This information was incorporated into the hydrologic and hydraulic modelling by adjusting the roughness parameters and inflows, as these were determined to have the greatest uncertainty and the highest impact on predicted water levels from the sensitivity analysis undertaken.

It was decided that an increase in model inflows by 30% for all events in combination with redefining the roughness map would more accurately correlate to the observed flood conditions within the system as identified by Landholders.

Manning's values were redefined using two separate roughness areas assigned to a channel roughness (n=0.04) for the main streamflow path only (delineated by contour maps), and a roughness value equivalent to a floodplain for the remaining model domain (n=0.1). The downstream boundary condition was also altered accordingly to reflect the increase in system roughness.

The increased flows and modified Manning's roughness map are shown in Table 21 and Figure 8 respectively.

	Native Companion Creek	Belyando River	
Event ARI (years)	30% Increase Q(m ³ /s)	30% Increase Q(m ³ /s)	
100	1385.8	1350.7	
50	1071.2	1045.2	
5	278.2	283.4	

 Table 21: Adjusted peak hydrograph inflows (+30%)

Document No:	HC-CRL-24100-RPT-0130
	CJVP10007-REP-C-011
Revision No:	Rev 0
Issue Date:	November 2011
Page No:	26

Figure 8: Revised Manning's roughness

10.1 Floodplain Drainage Structure Recommendations

As discussed in previous sections, with the additional data received and incorporated as part of the Detailed Floodplain Study, additional analysis was required on the proposed BFS cross-drainage infrastructure in order to demonstrate that the impacts of the proposed ACP rail alignment could be mitigated to levels that comply with the EIS and SEIS.

With the additional information received and incorporated as part of the Landholder consultation process, additional analysis was undertaken on the proposed BFS crossdrainage structures. Due to the increase in flows and roughness values, an additional 600/ 3000mm diameter supplementary culverts are required on the Belyando River in order to mitigate the impacts of the proposed railway to levels that comply with the EIS and SEIS. This resulted in a significant increase in cross-drainage infrastructure.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal - BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek/CJVP10007-REP-C-011 Rev 0 - Belyando River-Native Companion Creek.doc

Revision No:

Issue Date: Page No:

Figure 9: Belyando River supplementary culvert locations

10.2 Results

Following the collation of information received from Landholders during the consultation process, the findings from this Detailed Floodplain Study have been presented to specific Landholders who have an interest in and/or are influenced by the proposed Alpha Coal rail alignment and its impact on the Belyando River / Native Companion Creek system.

Feedback from Landholders through continued consultation has shown the predevelopment flood modelling correlates well with what has been observed on-site during major flood events. The post-development models utilise the same hydrologic parameters and same hydraulic modelling methods as the pre-development models to ensure consistency. Preliminary drainage structures have been modelled in the post-development case to conform to the SEIS requirements.

Peak floodplain inundation depths, water surface elevations, velocities and inundation extents have all been plotted and are shown in Appendix C.

Drawings include:

- Inundation extents:
 - 5, 50 and 100 year ARI events pre and post-development.
- Inundation depths:
 - 50 year ARI event post-development.
- Water surface elevations:
 - 50 year ARI event post-development.
- Velocity profiles:
 - 50 year ARI event post-development.
- Afflux:

_

- 50 year ARI event.

A summary of the findings from the Detailed Floodplain Study compared to the SEIS drainage criteria is shown in Table 22.

Design Aspect	SEIS Design Criteria	Result Summary	
Inundation Extent	Acceptable increases in inundation extent (above the existing conditions for a given return period to the 50 year ARI event) will be proposed where such an increase will not alter rural land use and result in significant impacts.	Conforms to SEIS requirements. There is an overall increase of 0.01% in inundation extent of the modelled area during the design flood event.	
Inundation Duration	Inundation duration not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.	Conforms to SEIS requirements.	

Table 22: Results Summary

Design Aspect	SEIS Design Criteria	Result Summary
Max Velocity	Bridge outlet velocity = maximum of 1.2 x existing velocity at a distance equal to the bridge span downstream of bridge. Culverts outlet velocity:	Conforms to SEIS requirements. Refer Velocity drawing in Appendix C for details.
	= 1.5m/s where erodible soils are present.= 2.5m/s for normal soils (with no	
	erosion control).	
Maximum afflux	Maximum 0.5m – normally (unless justifiable).	Conforms to SEIS requirements.
	Maximum 0.2m – around critical infrastructure.	Refer Afflux drawing in Appendix C for details.
	Maximum 0.1m – around dwellings.	

Further to the above table, results show that there is a minimal change in overall inundation extents due to the current alignment and proposed floodplain drainage structures. This is shown below in Table 23.

Table 23: Change in inundation extents

Event ARI (years)	vent ARI (years) % change in "wet" cells	
5	-0.22	-37.8
50	0.01	<1

With the inclusion of additional cross-drainage structures, the proposed ACP rail alignment will meet the afflux limits specified in the SEIS with the exception of minor localised areas. These areas are small in extent, localised to areas adjacent to the alignment and currently have no impact to existing infrastructure, inundation times, velocities and minimal increase in inundation extents. Afflux and velocity results for the nominated design criteria post-development meet the requirements of the SEIS and stakeholder requirements. Results are shown in Appendix C.

Inundation Duration

One of the primary concerns of Landholders from the EIS and during the consultation process is related to the change in duration of inundation due to the development of the Alpha Coal rail alignment.

Detailed 2-D modelling with time-step analysis on areas of interest reports that inundation duration has been maintained across the floodplain to the requirements of the SEIS i.e.; inundation duration of not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.

11.0 CONCLUSION

Detailed hydrologic and hydraulic modelling has been completed for Native Companion Creek and Belyando River at the proposed ACP rail alignment. It has been shown that the proposed railway can mitigate its hydraulic impacts to an acceptable level with only localised areas that exceed the limits placed on the project by the SEIS. The recommended cross-drainage structures for Belyando River and Native Companion Creek are shown below in Tables 24 to 26. Alternative drainage structures may be utilised providing equivalent hydraulic performance is maintained or improved.

Table 24: Native Companion Creek

Item	Value
Proposed cross-drainage infrastructure	1/ 60m bridge

Table 25:Belyando River

Item	Value
Proposed cross-drainage infrastructure	1/ 156m bridge and 600/ 3000mm diameter supplementary CSPs

Table 26: Floodplain relief culverts

Item	Value
Proposed cross-drainage infrastructure	900mm diameter CSPs at 25m in the floodplain

The findings can be further optimised when further hydraulic analysis is undertaken during the Detailed Design phase of the project.

Calibre	Document No:	HC-CRL-24100-RPT-0130
Alpha Coal Project		CJVP10007-REP-C-011
Detailed Floodplain Study - Belyando River / Native Companion Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	31

APPENDIX A FFA ANALYSIS

Client:	Hancock coal			Date:	17/8/2011
Project/Job:	ACP Job No:				
Subject:	act: FFA Native Companion Creek				ARB

1.689 0.686 -0.027

HISTORICAL DATA

Sample Period (Years)	44	Adjusted Mean, M
Number of Samples to Use, N	44	Adjusted Std Deviation, S
Plotting Position Parameter, $lpha$	0.4	Coefficient of Skewness, g

Rank	Discharge	P _N	Υ _P	Plotting			
	(m³/s)	AEP	ARI	Position	$\sum Log(Q)$	$\sum Log(Q)^2$	$\sum Log(Q)^{3}$
1	1819.308	1.4%	73.67	2.209	3.260	10.627	34.643
2	1359.113	3.6%	27.63	1.797	6.393	20.444	65.403
3	540.655	5.9%	17.00	1.565	9.126	27.913	85.815
4	381.797	8.1%	12.28	1.395	11.708	34.579	103.025
5	306.953	10.4%	9.61	1.259	14.195	40.765	118.409
6	303.109	12.7%	7.89	1.142	16.677	46.923	133.691
7	264.53	14.9%	6.70	1.039	19.099	52.791	147.907
8	239.858	17.2%	5.82	0.947	21.479	58.455	161.388
9	205.276	19.5%	5.14	0.861	23.791	63.802	173.752
10	149.034	21.7%	4.60	0.782	25.965	68.525	184.017
11	148.18	24.0%	4.17	0.707	28.135	73.238	194.246
12	122.2	26.2%	3.81	0.636	30.222	77.594	203.337
13	115.948	28.5%	3.51	0.568	32.287	81.855	212.133
14	97.399	30.8%	3.25	0.502	34.275	85.809	219.997
15	96.297	33.0%	3.03	0.439	36.259	89.744	227.802
16	84.288	35.3%	2.83	0.377	38.185	93.453	234.943
17	65.909	37.6%	2.66	0.317	40.004	96.761	240.962
18	62.306	39.8%	2.51	0.258	41.798	99.981	246.741
19	58.806	42.1%	2.38	0.200	43.568	103.112	252.280
20	58.043	44.3%	2.26	0.142	45.331	106.223	257.767
21	48.477	46.6%	2.15	0.085	47.017	109.064	262.556
22	45.611	48.9%	2.05	0.028	48.676	111.817	267.122
23	39.985	51.1%	1.96	-0.028	50.278	114.383	271.233
24	36.495	53.4%	1.87	-0.085	51.840	116.823	275.046
25	35.662	55.7%	1.80	-0.142	53.392	119.233	278.785
26	35.431	57.9%	1.73	-0.200	54.942	121.633	282.505
27	32.796	60.2%	1.66	-0.258	56.457	123.931	285.988
28	29.426	62.4%	1.60	-0.317	57.926	126.088	289.156
29	28.454	64.7%	1.55	-0.377	59.380	128.203	292.231
30	27.69	67.0%	1.49	-0.439	60.823	130.283	295.231
31	24.945	69.2%	1.44	-0.502	62.220	132.234	297.958
32	24.733	71.5%	1.40	-0.568	63.613	134.176	300.662
33	24.619	73.8%	1.36	-0.636	65.004	136.111	303.355
34	23.187	76.0%	1.32	-0.707	66.369	137.975	305.900
35	16.548	78.3%	1.28	-0.782	67.588	139.461	307.710
36	13.641	80.5%	1.24	-0.861	68.723	140.748	309.172
37	12.008	82.8%	1.21	-0.947	69.803	141.914	310.430
38	11.991	85.1%	1.18	-1.039	70.881	143.078	311.685
39	10.308	87.3%	1.15	-1.142	71.895	144.104	312.725
40	8.801	89.6%	1.12	-1.259	72.839	144.996	313.568
41	5.106	91.9%	1.09	-1.395	73.547	145.498	313.923
42	1.972	94.1%	1.06	-1.565	73.842	145.585	313.949
43	1.738	96.4%	1.04	-1.797	74.082	145.642	313.963
44	1.643	98.6%	1.01	-2.209	74.298	145.689	313.973

Client:	Hancock coal		Date:	17/8/2011
Project/Job:	ACP	Job No:	Sheet No:	
Subject:	FFA Native Companion Creek		By:	ARB

LOG-PEARSON III DISTR	IBUTION		Gridline Data		
				Min	Max
Mean Override, M	1.689	1.689	Discharge (r	1	10000
Std Deviation Override, S	0.686	0.686	AEP	0.95	0.0001
Skewness Override, g	-0.027	-0.027		-1.645	3.719

Υ _P	P _N	LPIII	LPIII Confide	ence Limit	Plotting	Frequency
ARI	AEP	Discharge	Lower	Upper	Position	Factor
2000	0.05%	8240.7	3510.2	26995.8	3.291	3.246
1000	0.1%	6060.5	2691.1	18668.4	3.090	3.052
500	0.2%	4374.6	2028.9	12631.1	2.878	2.845
200	0.5%	2745.5	1353.2	7237.0	2.576	2.550
100	1.0%	1867.5	966.6	4571.8	2.326	2.306
50	2.0%	1224.4	667.3	2769.9	2.054	2.039
20	5.0%	648.8	380.1	1310.0	1.645	1.637
10	10.0%	368.3	228.4	677.1	1.282	1.279
5	20.0%	185.0	121.1	308.2	0.842	0.843
2	50.0%	49.2	33.1	73.3	0.000	0.004
1.667	60.0%	33.0	21.7	48.8	-0.253	-0.249
1.429	70.0%	21.5	13.6	32.0	-0.524	-0.521
1.250	80.0%	13.0	7.8	19.8	-0.842	-0.840
1.111	90.0%	6.4	3.5	10.4	-1.282	-1.284
1.053	95.0%	3.6	1.8	6.1	-1.645	-1.653
1.010	99.0%	1.2	0.5	2.3	-2.326	-2.346

HYDROLOGIC MODEL DATA

ARI	AEP	Discharge		Position
2000	0.0005			3.291
1000	0.001			3.090
500	0.002			2.878
200	0.005		1816	2.576
100	0.01	1504	1534	2.326
50	0.02	1204	1221	2.054
20	0.05	919	928	1.645
10	0.1	532	528	1.282
5	0.2	347	342	0.842
2	0.5	51	48	0.000

m=1.1, IL=10, CL=2

1437
1224
975
771
618
382

1 # 0. # # # 99.999% # # # # 0. # # # 99.995% # # # # 0. # # # 99.99% # # # # 0. # # # 99.98% # # # # 0. # # # 99.95% # # # # 0. # # # 99.9% # # # # 0. # # # 99.8% # # # # 0. # # # 99.5% # # # # 1.1 # # # 99.0% # # # # 2.1 # # # 98.0% # # # # 5.1 # # # 95.0% # # # # 1C # # # 90.0% # # # # 2C # # # 80.0% # # # # 3C # # # 70.0% # # # # 4C # # # 60.0% # # # # 50 # # # #

Calibre	Document No:	HC-CRL-24100-RPT-0130
Alpha Coal Project		CJVP10007-REP-C-011
Detailed Floodplain Study - Belyando River / Native Companion Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	32

APPENDIX B RORB RESULTS

Belyando River Catchment Deliniation

Native Companion Creek Catchment deliniation

Kc and m parameters - Belyando River

Belyando River			
ARR Book 5			
Catchment area	5652.3 kn	n ²	
d _{av}	98.44 kn	n (from RORB mode	el)
K _c (Weeks, QLD)	85.74		
adjusted K _c	<mark>85.74</mark>		
m	0.982649	for 0.6 <m<1.2< th=""><th></th></m<1.2<>	
LHS 0.870987403	RHS (goal se 0.534633	ek to LHS by changing m)	
RORB manual	Iteration1	Iteration2	
K _c	165.3999	42.43134	
Q _p	1800 m	³/s 1800 m³/s	
m ₁	0.8	1	
m ₂	1	1.1	

K _c adjustment factor	0.256538	0.506496
new K _c	42.43134	21.49129

Kc and m parameters - Native Companion Creek

Native Companion		
ARR Book 5		
Catchment area	5124.8 ki	m ²
d _{av}	168.35 ki	m (from RORB model)
K _c (Weeks, QLD)	81.40	
-		
adjusted K_c	<mark>81.4</mark>	
m	1.008839	for 0.6 <m<1.2< th=""></m<1.2<>
LHS 0.483516484	RHS (goal se 0.48361	eek to LHS by changing m)
RORB manual K _c	Iteration1 41.10072	
Q _p	1200 m	³ /s

1.01

 m_1

Belyando River RORB

RORBWin Output File ****** Program version 6.15 (last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz Date run: 09 Sep 2011 09:58 : \\calibre.network\PROJECTS\CEJV\BRI\Projects\PRO-Projects\2011 Vector file \CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Belyando River\RORB\Belyando River.catg : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering Storm file \6.4 Hydrology\Belyando River\RORB\Belyando River_72h50y.stm Output information: Flows & all input data Data checks: ********* Next data to be read & checked: Catchment name & reach type flag Control vector & storage data 7.0 Location read as outlet Code no. 50 Sub-area areas Impervious flag Initial storm data Rainfall burst times Pluviograph 1 Sub-area rainfalls Data check completed Data: * * * * belyando Time data, in increments from initial time belyando: 72 hour 50 year Design Storm Time increment (hours) = 4.00 Start Finish Rainfall times: 0 18 End of hyeto/hydrographs: 18 Duration of calculations: 300 Pluviograph data (time in incs, rainfall in mm, in increment following time shown) 1:Temporal pattern (% of depth Time 1 25.8 0 1 4.7 2 1.7 3 0.7 4 1.3 5 2.6 6 12.0 7 17.0 8 6.0 9 3.1 10 1.0 11 2.1 12 7.5 13 9.4

143.8150.5160.5170.3

Total 100.0

DESIGN run control vector

Step	Code	Description	
1	1	Add sub-area 'A' inflow & route thru normal storage	1
2	3	Store hydrograph from step 1; reset hydrograph to	zero
3	1	Add sub-area 'B' inflow & route thru normal storage	2
4	4	Add h-graph ex step 2 to h-graph ex step 3	
5	5	Route hydrograph thru normal storage 3	
6	2	Add sub-area 'C' inflow & route thru normal storage	4
7	2	Store hydrograph from step 6; reset hydrograph to	- 7ero
, Q	1	Add sub-area 'D' inflow & route thru normal storage	5
0	1	Add b graph or stop 7 to b graph or stop 9	J
10	4 F	Add II-graph ex step 7 to II-graph ex step 6	
10	5	Route nydrograph thru hormal storage 6	_
	2	Add sub-area 'E' inflow & route thru normal storage	/
12	3	Store hydrograph from step 11; reset hydrograph to	zero
13	1	Add sub-area 'F' inflow & route thru normal storage	8
14	4	Add h-graph ex step 12 to h-graph ex step 13	
15	3	Store hydrograph from step 14; reset hydrograph to	zero
16	1	Add sub-area 'G' inflow & route thru normal storage	9
17	4	Add h-graph ex step 15 to h-graph ex step 16	
18	5	Route hydrograph thru normal storage 10	
19	2	Add sub-area 'H' inflow & route thru normal storage	11
20	5	Route hydrograph thru normal storage 12	
21	2	Add sub-area 'I' inflow & route thru normal storage	13
22	5	Route hydrograph thru normal storage 14	
23	3	Store hydrograph from step 22; reset hydrograph to	zero
24	1	Add sub-area 'J' inflow & route thru normal storage	15
25	5	Route hydrograph thru normal storage 16	15
25	1	Add h graph or gtop 22 to h graph or gtop 25	
20	- -	Add m-graph ex step 25 to m-graph ex step 25	17
27	2 E	Add Sub-area K inflow & route thru normal storage	т /
20	5	Route Hydrograph thru hormal storage 10	10
29	2	Add sub-area 'L' inflow & route thru normal storage	19
30	5	Route nydrograph thru normal storage 20	0.1
31	2	Add sub-area 'M' inflow & route thru normal storage	21
32	3	Store hydrograph from step 31; reset hydrograph to	zero
33	1	Add sub-area 'N' inflow & route thru normal storage	22
34	5	Route hydrograph thru normal storage 23	
35	2	Add sub-area 'O' inflow & route thru normal storage	24
36	5	Route hydrograph thru normal storage 25	
37	3	Store hydrograph from step 36; reset hydrograph to	zero
38	1	Add sub-area 'P' inflow & route thru normal storage	26
39	5	Route hydrograph thru normal storage 27	
40	4	Add h-graph ex step 37 to h-graph ex step 39	
41	2	Add sub-area 'Q' inflow & route thru normal storage	28
42	4	Add h-graph ex step 32 to h-graph ex step 41	
43	5	Route hydrograph thru normal storage 29	
44	2	Add sub-area 'R' inflow & route thru normal storage	30
45	3	Store hydrograph from step 44; reset hydrograph to	zero
46	1	Add sub-area 'S' inflow & route thru normal storage	31
47	4	Add h-graph existen 45 to h-graph existen 46	31
48	5	Route hydrograph thru normal storage 32	
10 10	2	Add gub-area 'T' inflow & route thru normal storage	33
マク 50	∠ 7 ∩	Drint hydrograph outlet	در
50	0	$\frac{1}{2}$	
U L	U	THU OF CONCLOT AECTOL	

Sub-area data

Sub-	Area	Dist.
area	km²	km*
A	2.66E+02	1.86E+02

В	3.21E+02	1.90E+02
С	2.62E+02	1.61E+02
D	2.41E+02	1.71E+02
Е	4.41E+02	1.38E+02
F	4.18E+02	1.50E+02
G	1.50E-01	1.24E+02
Н	3.67E+02	1.10E+02
I	4.46E+02	8.31E+01
J	3.15E+02	1.01E+02
K	3.24E+02	6.41E+01
L	3.24E+02	4.51E+01
М	3.27E+01	2.63E+01
Ν	4.00E+02	9.58E+01
0	4.37E+02	5.37E+01
Ρ	3.02E+02	5.70E+01
Q	7.98E+01	2.89E+01
R	3.42E+02	1.13E+01
S	3.32E+02	2.46E+01
Т	8.90E-01	6.25E-01

Total 5.652E+03

For whole catchment ; Av. Dist., km* = 98.44 For interstation area 1; Av. Dist., km* = 98.44; ISA Factor = 1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	Slope
no.	km*	time		percent
1	16.4	0.167	Natural	
2	20.0	0.203	Natural	
3	8.4	0.086	Natural	
4	8.4	0.086	Natural	
5	18.2	0.185	Natural	
б	14.4	0.147	Natural	
7	14.4	0.147	Natural	
8	25.8	0.262	Natural	
9	0.3	0.003	Natural	
10	13.4	0.136	Natural	
11	13.4	0.136	Natural	
12	13.9	0.141	Natural	
13	13.9	0.141	Natural	
14	5.1	0.052	Natural	
15	32.1	0.326	Natural	
16	5.1	0.052	Natural	
17	5.1	0.052	Natural	
18	13.9	0.141	Natural	
19	13.9	0.141	Natural	
20	4.9	0.050	Natural	
21	4.9	0.050	Natural	
22	24.9	0.253	Natural	
23	17.2	0.174	Natural	
24	17.2	0.174	Natural	
25	7.6	0.077	Natural	
26	20.5	0.208	Natural	
27	7.6	0.077	Natural	
28	7.6	0.077	Natural	
29	10.0	0.102	Natural	
30	10.0	0.102	Natural	
31	23.4	0.237	Natural	
32	0.6	0.006	Natural	
33	0.6	0.006	Natural	

* or other function of reach properties related to travel time

belyando DESIGN Run belyando: 72 hour 50 year Design Storm Time increment = 4.00 hours

Constant loss model selected

Rain: Time	fall, m	m, ir	n time Su	e ind ub-	c. fo	ollo	wing	time	e sho	own								
Incs	ment		A	В	С	D	Ε	F	G	Н	I	J	K	L	М	Ν	0	Ρ
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} 63.5\\ 11.6\\ 4.2\\ 1.7\\ 3.2\\ 6.4\\ 29.6\\ 41.9\\ 14.8\\ 7.6\\ 2.5\\ 5.2\\ 18.5\\ 23.2\\ 9.4\\ 1.2\\ 1.2\\ 0.7 \end{array}$		64 12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1 1	64 12 3 6 30 42 15 8 23 9 1 1 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1 1	64 12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1 1	64 12 3 6 30 42 15 8 2 5 18 23 9 1 1						
Tot. Pluv	246.3 i. ref.	no.	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1
Time	Catab		Si	ıb-														
Incs	ment		Q	R	S	Т												
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} 63.5\\ 11.6\\ 4.2\\ 1.7\\ 3.2\\ 6.4\\ 29.6\\ 41.9\\ 14.8\\ 7.6\\ 2.5\\ 5.2\\ 18.5\\ 23.2\\ 9.4\\ 1.2\\ 1.2\\ 0.7 \end{array}$		64 12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	64 12 3 6 30 42 15 8 25 18 23 9 1 1 1	64 12 3 6 30 42 15 8 25 18 23 9 1 1 1	64 12 3 6 30 42 15 8 23 9 1 1 1												
Tot. Pluv	246.3 i. ref.	no.	246 1	246 1	246 1	246 1												

Raint	Eall-excess,	mm,	in	time	inc.	fol	lowi	ng t	ime	show	n						
Time		Sı	ıb-														
	Catch	Ar	rea														
Incs	ment	A	В	C	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Ρ
0	38.5	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} 1.6\\ 0.0\\ 0.0\\ 19.6\\ 31.9\\ 4.8\\ 0.0\\ 0.0\\ 0.0\\ 8.5\\ 13.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$		2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0 0	2 0 0 20 32 5 0 0 0 8 13 0 0 0 0 0
Tot.1	117.9		118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118
Time Incs	Catch ment	n	Sı Aı Q	ub- rea R	S	Т												
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Tot. 7 8 9 10 11 12 13 14 15 16 17 Tot. 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 16 17 17 17 17 17 17 17 17 17 17 17 17 17	38.5 1.6 0.0 0.0 19.6 31.9 4.8 0.0 0.0 8.5 13.2 0.0 0.0 0.0 0.0 117.9 ing ret ****** ando ando: EN rur	esults: ******* 72 hou: n no.	39 2 0 0 20 32 5 0 0 0 8 13 0 0 0 118 r 50	39 2 0 0 20 32 5 0 0 0 8 13 0 0 0 118	39 2 0 0 20 32 5 0 0 0 8 13 0 0 0 118	39 2 0 0 20 32 5 0 0 0 8 13 0 0 0 118	Stor	cm										
Parar	neters	s: kc	= :	130.()) 	m =	= 1.0)1	lont	1.04		~~ /h	N N					
*** (Peak Time Volur Time Lag	disch to pe ne,m ³ to ce (c.m.	harge,m eak,h to c.m	ydros ³/s ,h .),h	grap	15 15 15 15 15 15 15 15 15 104 104 139	outle drogr	et	, (2.50)	/ 11	,					

Hydrograph summary

**** Site Description 01 Calculated hydrograph, outlet Inc Time Hyd0001 4.00 0.000 1 83.879 2 8.00 3 12.00 250.115 4 16.00 301.469 5 20.00 242.658 24.00 214.717 6 7 28.00 204.841 8 32.00 240.605 9 36.00 395.317 10 40.00 569.716 11 44.00 608.470 12 48.00 563.299 13 52.00 541.662 14 56.00 556.398 15 60.00 625.182 704.818 16 64.00 17 68.00 725.253 18 72.00 718.663 76.00 19 726.477 80.00 738.834 20 21 84.00 751.930 22 88.00 766.100 23 92.00 778.585 24 96.00 789.268 100.00 25 797.233 104.00 26 802.431 27 108.00 804.770 28 112.00 804.432 29 116.00 801.648 30 120.00 796.727 31 124.00 789.994 32 128.00 781.779 33 132.00 772.397 34 136.00 762.139 140.00 35 751.268 36 144.00 740.009 148.00 728.559 37 38 152.00 717.075 39 156.00 705.684 40 160.00 694.482 41 164.00 683.535 168.00 42 672.881 43 172.00 662.539 176.00 44 652.505 180.00 45 642.757 46 184.00 633.261 623.971 47 188.00 48 192.00 614.834 49 196.00 605.790 50 200.00 596.776 51 587.732 204.00 52 208.00 578.594 53 212.00 569.306 54 216.00 559.813 55 220.00 550.070 56 224.00 540.035 57 228.00 529.676 58 232.00 518.966 59 236.00 507.889 60 240.00 496.437 244.00 61 484.608 62 248.00 472.408 63 252.00 459.852 64 256.00 446.960

56678901234567890123456789012345678901234567890121212222256789010123456789012234567890	260.00 264.00 264.00 268.00 272.00 276.00 280.00 280.00 284.00 292.00 296.00 304.00 312.00 314.00 324.00 324.00 324.00 340.00 346.00 340.00 346.00 346.00 346.00 356.00 360.00 364.00 366.00 364.00 366.00 366.00 366.00 366.00 366.00 366.00 366.00 400.00 404.00 408.00 422.00 436.00 424.00 426.00 426.00 426.00 426.00 426.00 426.00 426.00 456.00 466.00 468.00 472.00 488.00 452.00 456.00 460.00 464.00 488.00 452.00 456.00 456.00 456.00 456.00 456.00 506.00 5	$\begin{array}{c} 433.757\\ 420.276\\ 406.551\\ 392.624\\ 378.535\\ 364.330\\ 350.054\\ 335.755\\ 321.477\\ 307.268\\ 293.172\\ 279.231\\ 265.487\\ 251.978\\ 238.739\\ 225.802\\ 213.198\\ 200.951\\ 189.084\\ 177.616\\ 166.564\\ 155.938\\ 145.748\\ 136.001\\ 126.700\\ 117.845\\ 109.434\\ 101.464\\ 93.927\\ 86.816\\ 80.121\\ 73.830\\ 67.932\\ 62.413\\ 57.259\\ 52.454\\ 47.984\\ 43.834\\ 39.986\\ 36.426\\ 33.138\\ 30.106\\ 27.315\\ 24.751\\ 22.398\\ 20.243\\ 13.830\\ 10.66\\ 27.315\\ 24.751\\ 22.398\\ 20.243\\ 13.830\\ 10.66\\ 27.315\\ 24.751\\ 22.398\\ 20.243\\ 13.338\\ 1.980\\ 10.748\\ 9.631\\ 8.620\\ 7.707\\ 6.812\\ 13.338\\ 1.980\\ 10.748\\ 9.631\\ 8.620\\ 7.707\\ 6.822\\ 13.384\\ 1.980\\ 10.748\\ 9.631\\ 8.620\\ 7.707\\ 6.829\\ 3.844\\ 3.411\\ 3.023\\ 2.676\\ 2.367\\ \end{array}$
124 125 126 127 128 129 130 131 132 133 134	496.00 500.00 504.00 512.00 516.00 520.00 524.00 528.00 532.00 532.00	4.329 3.844 3.411 3.023 2.676 2.367 2.092 1.846 1.628 1.435 1.263
136	544.00	0.975

$\begin{array}{c} 1378\\ 1401\\ 1423\\ 1445\\ 1446\\ 1523\\ 4567\\ 8901\\ 1555\\ 15567\\ 8901\\ 16667\\ 8901\\ 177\\ 1775\\ 1778\\ 1823\\ 1823\\ 18867\\ 88901\\ 19234\\ 5677\\ 89001\\ 23222\\ 2033\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 1823\\ 19234\\ 19234\\ 192222\\ 2033\\ 2$	548.00 552.00 556.00 560.00 564.00 568.00 572.00 576.00 580.00 580.00 584.00 592.00 600.00 612.00 616.00 620.00 624.00 628.00 632.00 636.00 640.00 640.00 640.00 648.00 652.00 660.00 664.00 668.00 672.00 676.00 688.00 672.00 676.00 688.00 672.00 676.00 688.00 672.00 700.00 724.00 720.00 724.00 726.00 726.00 740.00 744.00 725.00 740.00 744.00 725.00 756.00 766.00 768.00 772.00 776.00 788.00 772.00 776.00 788.00 772.00 776.00 788.00 772.00 776.00 788.00 772.00 776.00 788.00 772.00 776.00 788.00 788.00 772.00 776.00 788.00 788.00 772.00 776.00 788.00 780.	0.856 0.751 0.658 0.576 0.504 0.440 0.384 0.335 0.292 0.255 0.222 0.193 0.168 0.146 0.126 0.110 0.095 0.082 0.071 0.062 0.071 0.062 0.071 0.062 0.071 0.062 0.071 0.062 0.034 0.046 0.040 0.034 0.026 0.022 0.019 0.016 0.014 0.022 0.019 0.016 0.014 0.022 0.022 0.019 0.016 0.014 0.022 0.022 0.022 0.010 0.005 0.002 0.003 0.004 0.005 0.003 0.005 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
198 199 200 201 202 203 204 205 206 207	792.00 796.00 800.00 804.00 812.00 816.00 820.00 824.00 822.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

$\begin{array}{c} 209\\ 210\\ 211\\ 212\\ 213\\ 214\\ 215\\ 216\\ 217\\ 218\\ 220\\ 221\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222$	836.00 840.00 844.00 844.00 852.00 860.00 864.00 863.00 876.00 884.00 884.00 892.00 904.00 904.00 912.00 916.00 924.00 924.00 922.00 936.00 940.00 940.00 940.00 940.00 940.00 952.	0.000 0
241 242 243 244 245 246	964.00 968.00 972.00 976.00 980.00 984.00	0.000 0.000 0.000 0.000 0.000
247 247 248 249 250 251	988.00 992.00 996.00 1000.00 1004.00	0.000 0.000 0.000 0.000 0.000 0.000
252	1008.00	0.000
253	1012.00	0.000
254	1016.00	0.000
255	1020.00	0.000
256	1024.00	0.000
257	1028.00	0.000
258	1032.00	0.000
259	1036.00	0.000
260	1040.00	0.000
261	1044.00	0.000
262	1048.00	0.000
263	1052.00	0.000
264	1056.00	0.000
265	1060.00	0.000
266	1064.00	0.000
267	1068.00	0.000
268	1072.00	0.000
269	1076.00	0.000
270	1080.00	0.000
271	1084.00	0.000
272	1088.00	0.000
273	1092.00	0.000
274	1096.00	0.000
275	1100.00	0.000
276	1104.00	0.000
277	1108.00	0.000
278	1112.00	0.000
279	1116.00	0.000
280	1120.00	0.000

281 282 283 284 285 286 287 288 289 290 290	1124.00 1128.00 1132.00 1136.00 1140.00 1144.00 1148.00 1152.00 1156.00 1160.00 1164.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
294	1176.00	0.000
295 296	1180.00	0.000
297	1188.00	0.000
298 299 300 301	1192.00 1196.00 1200.00 1204.00	0.000 0.000 0.000 0.000

RORBWin Output File ****** Program version 6.15 (last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz Date run: 12 Sep 2011 15:43 : \\calibre.network\PROJECTS\CEJV\BRI\Projects\PRO-Projects\2011 Vector file \CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Native companion creek\RORB modelling\Native companion creek.catg : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering Storm file \6.4 Hydrology\Native companion creek\RORB modelling\Native companion creek_ 72h50y.stm Output information: Flows & all input data Data checks: ******* Next data to be read & checked: Catchment name & reach type flag Control vector & storage data Code no. 33 7.0 Location read as Code no. 41 7.0 Location read as outlet Sub-area areas Impervious flag Initial storm data Rainfall burst times Pluviograph 1 Sub-area rainfalls Data check completed Data: * * * * native companion Time data, in increments from initial time native companion: 72 hour 50 year Design Storm Time increment (hours) = 4.00 Start Finish Rainfall times: 0 18 End of hyeto/hydrographs: 18 Duration of calculations: 120 Pluviograph data (time in incs, rainfall in mm, in increment following time shown) 1:Temporal pattern (% of depth Time 1 0 25.8 4.7 1 2 1.7 0.7 3 4 1.3 5 2.6 6 12.0 7 17.0 8 6.0 9 3.1 10 1.0 11 2.1

12	7.5
13	9.4
14	3.8
15	0.5
16	0.5
17	0.3

Total 100.0

DESIGN run control vector

Step	Code	Description	
1	1	Add sub-area 'A' inflow & route thru normal storage 1	
2	3	Store hydrograph from step 1; reset hydrograph to zero	
3	1	Add sub-area 'B' inflow & route thru normal storage 2	
4	4	Add h-graph ex step 2 to h-graph ex step 3	
5	5	Route hydrograph thru normal storage 3	
6	2	Add sub-area 'C' inflow & route thru normal storage 4	
7	3	Store hydrograph from step 6; reset hydrograph to zero	
8	1	Add sub-area 'D' inflow & route thru normal storage 5	
9	4	Add h-graph ex step 7 to h-graph ex step 8	
10	5	Route hydrograph thru normal storage 6	
11	2	Add sub-area 'E' inflow & route thru normal storage 7	
12	3	Store hydrograph from step 11; reset hydrograph to zero	
13	1	Add sub-area 'F' inflow & route thru normal storage 8	
14	4	Add h-graph ex step 12 to h-graph ex step 13	
15	5	Route hydrograph thru normal storage 9	
16	2	Add sub-area 'G' inflow & route thru normal storage 10	
17	3	Store hydrograph from step 16; reset hydrograph to zero	
18	1	Add sub-area 'H' inflow & route thru normal storage 11	
19	4	Add h-graph ex step 17 to h-graph ex step 18	
20	5	Route hydrograph thru normal storage 12	
21	2	Add sub-area 'I' inflow & route thru normal storage 13	
22	3	Store hydrograph from step 21; reset hydrograph to zero	
23	1	Add sub-area 'J' inflow & route thru normal storage 14	
24	5	Route hydrograph thru normal storage 15	
25	2	Add sub-area 'K' inflow & route thru normal storage 16	
26	5	Route hydrograph thru normal storage 17	
27	2	Add sub-area 'L' inflow & route thru normal storage 18	
28	5	Route hydrograph thru normal storage 19	
29	2	Add sub-area 'M' inflow & route thru normal storage 20	
30	5	Route nydrograph thru normal storage 21	
31	2	Add sub-area 'N' inflow & route thru normal storage 22	
3∠ 22	4 7 0	Add n-graph ex step 22 to n-graph ex step 31	
33	7.0	Print nydrograph,	
34	5	Route nydrograph thru normal storage 23	
35	2	Add Sub-area '0' Iniliow & roule thru hormal storage 24	
30 27	1	Add gub area LDL inflow (route thru normal storage 25	
3/	1	Add Sub-area 'P' Initow & route thru normal storage 25	
20	4 5	Aud II-graph ex step 30 to II-graph ex step 37 Bouto hydrograph thru normal storage 26	
27 10	5	Add gub area 101 inflow (route thru normal storage 27	
40 /11	⊿ 7 0	Drint hydrograph outlet	
++ 10	0	riine nyalograph, oullet ***********************************	
74	0	BIR OF CONCLOT ACCEDE	

Sub-area data

Sub-	Area	Dist.
area	km²	km*
A	1.06E+02	2.75E+02
В	1.49E+02	2.75E+02
С	3.13E+02	2.44E+02
D	4.68E+02	2.50E+02
Е	3.71E+02	2.08E+02
F	3.67E+02	2.20E+02
G	7.59E+02	1.52E+02
Н	9.65E+01	1.23E+02

I	1.61E+01	1.12E+02
J	3.01E+02	2.26E+02
Κ	3.52E+02	1.91E+02
L	3.24E+02	1.65E+02
М	3.12E+02	1.41E+02
Ν	1.51E+02	1.19E+02
0	3.48E+02	9.18E+01
Ρ	1.03E+02	8.27E+01
Q	5.90E+02	3.67E+01

Total 5.125E+03

For	whole catchment	;	Av.	Dist.,	km*	=	168.35		
For	interstation area	1;	Av.	Dist.,	km*	=	168.35;	ISA Factor =	1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	Slope
1	10 0	0 076	Natural	percent
1 2	12.0	0.070	Natural	
2	10 2	0.079	Natural	
3	10.3	0.109	Natural	
4 E	18.3	0.109	Natural	
5	24.3 17 F	0.144	Natural	
6	17.5	0.104	Natural	
/	17.5	0.104	Natural	
8	29.8	0.1//	Natural	
9	38.8	0.230	Natural	
10	38.8	0.230	Natural	
11	9.4	0.056	Natural	
12	1.4	0.009	Natural	
13	1.4	0.009	Natural	
14	18.8	0.111	Natural	
15	16.5	0.098	Natural	
16	16.5	0.098	Natural	
17	9.6	0.057	Natural	
18	9.6	0.057	Natural	
19	13.9	0.083	Natural	
20	13.9	0.083	Natural	
21	8.4	0.050	Natural	
22	8.4	0.050	Natural	
23	18.5	0.110	Natural	
24	18.5	0.110	Natural	
25	9.4	0.056	Natural	
26	36.7	0.218	Natural	
27	36.7	0.218	Natural	
				_

 \ast or other function of reach properties related to travel time

native companion DESIGN Run native companion: 72 hour 50 year Design Storm Time increment = 4.00 hours

Constant loss model selected

Rain	fall, mm,	in	time	inc.	. fo	llow	ing	time	sho	wn								
TTUIC			5u	D														
	Catch		Ar	ea														
Incs	ment		A	В	С	D	Ε	F	G	Η	I	J	K	L	М	Ν	0	Ρ
0	63.5		64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	11.6 4.2 1.7 3.2 6.4 29.6 41.9 14.8 7.6 2.5 5.2 18.5 23.2 9.4 1.2 1.2 0.7		12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 3 6 30 42 15 8 2 5 18 23 9 1 1	12 4 3 6 30 42 15 8 2 5 18 23 9 1 1	12 4 3 6 30 42 15 8 2 5 18 23 9 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1 1	12 4 2 3 6 30 42 15 8 2 5 18 23 9 1 1
Tot.2 Pluv:	246.3 i. ref.	no.	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1	246 1
Time Incs	Catch ment		Su Ar Q	ıb- rea														
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	63.5 11.6 4.2 1.7 3.2 6.4 29.6 41.9 14.8 7.6 2.5 5.2 18.5 23.2 9.4 1.2 0.7 246 3		64 12 4 2 3 6 30 42 15 8 23 9 1 1 1 246															

Pluvi. ref. no. 1

Rainf Time	fall-excess,	mm, Su	in t b-	ime	inc.	fol	lowi	ng t	ime	show	m						
	Catch	Ar	ea														
Incs	ment	A	В	С	D	Е	F	G	Η	I	J	K	L	М	N	0	Ρ
0	38.5	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39
1	1.6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	19.6	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
7	31.9	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
8	4.8	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
9	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	8.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
13	13.2	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
14	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

17	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tot.	117.9	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118
Time Incs	Catch ment	Su Ar Q	ıb- rea														
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	38.5 1.6 0.0 0.0 0.0 19.6 31.9 4.8 0.0 0.0 0.0 8.5 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	39 2 0 20 32 5 0 0 0 8 13 0 0 0 0 0															
Tot.	117.9	118															
Rout **** nati DESI Para Loss	Routing results: ************************************																
* * *	Calculated h	ydrog	grapl	ı,													
Peak Time Volu Time Lag Lag	Hydrograph Calc. Peak discharge,m ³ /s 1096. Time to peak,h 60.0 Volume,m ³ 4.81E+08 Time to centroid,h 96.1 Lag (c.m. to c.m.),h 71.9 Lag to peak,h 35.9																
* * *	Calculated hy	ydrog	grapl	ı, c	outle	et											
Peak Time Volu Time Lag Lag	Hydrograph Calc. Peak discharge,m ³ /s 814.5 Time to peak,h 152. Volume,m ³ 6.03E+08 Time to centroid,h 164. Lag (c.m. to c.m.),h 140. Lag to peak,h 128.																
Hydr ****	ograph summa: ***********	су * *															

Site 01 02	Descrip Calcula Calcula	otion ated hydrog ated hydrog	raph, raph. outle	۰t.
Si 02 In 1234567890112345178901222222222233333334442345678901223455555555555555555555555555555555555	Descrip Calcula Calcula Calcula Time 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 48.00 52.00 56.00 64.00 68.00 72.00 76.00 84.00 88.00 92.00 96.00 100.00 104.00 108.00 112.00 100.00 124.00 128.00 122.00 124.00 128.00 122.00 136.00 140.00 140.00 140.00 148.00 155.00 160.00 168.00 172.00 166.00 168.00 172.00 176.00 188.00 172.00 160.00 160.00 160.00 168.00 172.00 160.00 160.00 160.00 161.00 161.00 161.00 161.00 161.00 162.00 161	btion ated hydrog Hyd0001 0.00 196.51 431.05 464.74 426.94 394.24 385.57 473.96 742.57 960.94 987.44 940.57 903.25 927.01 1026.39 1096.40 1085.20 1053.61 1028.60 1009.79 989.58 969.15 947.07 923.27 897.55 869.93 840.48 809.41 776.94 743.35 708.94 674.01 638.87 603.79 569.04 534.86 501.45 469.01 437.67 407.56 378.77 351.35 325.35 300.78 277.65 255.92 235.59 216.59 198.90 182.44 167.17 153.02 139.94 127.85	raph, outle Hyd0002 0.000 100.476 193.651 188.001 159.620 154.384 201.986 328.159 406.586 401.090 390.077 385.439 407.441 464.875 499.524 502.437 510.308 522.019 536.743 553.816 572.666 592.781 613.696 634.981 656.246 677.132 697.320 716.523 734.488 750.999 765.867 778.939 790.088 799.217 806.256 811.161 813.910 814.507 812.974 809.356 803.712 796.121 786.675 775.476 762.640 748.291 732.557 715.574 697.479 678.410 658.507 637.906 616.740	ŧ
50 51 52 53 54 55 56	204.00 208.00 212.00 216.00 220.00 224.00	167.17 153.02 139.94 127.85 116.71 106.44	678.410 658.507 637.906 616.740 595.138 573.223	
57 58 59 60 61 62 63	228.00 232.00 236.00 240.00 244.00 248.00 252.00	96.99 88.31 80.34 73.04 66.34 60.22 54.61	551.114 528.922 506.748 484.689 462.833 441.259 420.038	
64 65 66	256.00 260.00 264.00	49.50 44.83 40.57	399.233 378.900 359.087	

67	268.00	36.69	339.835
69	272.00	29.94	303.139
70 71	280.00 284 00	27.02 24 37	285.745 269 008
72	288.00	21.97	252.940
73 74	292.00	19.79	237.546
75	300.00	16.02	208.779
76	304.00	14.40	195.399
78	312.00	12.94 11.62	170.599
79	316.00	10.43	159.153
80 81	320.00 324.00	9.36 8.39	148.324
82	328.00	7.51	128.441
83 84	332.00	6.73	119.350 110.798
85	340.00	5.39	102.763
86 87	344.00 348.00	4.82 4 30	95.225 88 162
88	352.00	3.84	81.552
89 90	356.00 360 00	3.43	75.373 69 604
91	364.00	2.73	64.224
92 93	368.00	2.44	59.211 54 547
94	376.00	1.93	50.211
95 96	380.00	1.72	46.184 42 448
97	388.00	1.36	38.985
98	392.00	1.21	35.779
100	400.00	0.96	30.071
101	404.00	0.85	27.539
102	408.00 412.00	0.75	23.050
104	416.00	0.59	21.066
105 106	420.00 424.00	0.53	19.241 17.563
107	428.00	0.41	16.020
108 109	432.00 436.00	0.37	14.604
110	440.00	0.29	12.114
112	444.00 448.00	0.25	10.023
113	452.00	0.20	9.110
$114 \\ 115$	456.00 460.00	0.18	8.275 7.512
116	464.00	0.14	6.816
118	468.00 472.00	0.12	6.181 5.601
119	476.00	0.09	5.074
120 121	480.00 484.00	0.08 0.07	4.593 4.156

Belyando River RORB flows

Native Companion Creek RORB flows

Calibre	Document No:	HC-CRL-24100-RPT-0130
Alpha Coal Project		CJVP10007-REP-C-011
Detailed Floodplain Study - Belyando River / Native Companion Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	33

APPENDIX C FLOOD MAPS

NOT TO BE SCALED

					1			
				DRAWN	D. SMITH	07.10.11		
	MASTER COPY			DRAFTING CHECK				₽₽≫
	THASTER COFF			DESIGNER				LPHA C
				ENG. APPROVED			callbre	
				ENG. MANAGER				ΕΓΕΟΧ ΕΙ ΥΑΝΓ
				PROJECT MANAGER				
	DESCRIPTION			CLIENT APPROVED			CJVP10007-[DWG-G
Į	5 6		7		8		9	

				DRAWN	D. SMITH	07.10.11		
	MASTER COPY			DRAFTING CHECK				╘┸┸╶═╱
				DESIGNER				ALPHA C
				ENG. APPROVED			callbre	RAIL ALIC
				ENG. MANAGER				DEPTH RELYAND
				PROJECT MANAGER				
DESCRIPTION			APP	CLIENT APPROVED			CJVP10007-	-DWG-G
Į	5 6		7		8	·	9	

NOT TO BE SCALED

		1			DRAWN	D. SMITH	07.10.11			
	MASTER COPY				DRAFTING CHECK				₽₽≫	
]			DESIGNER				LPHA C	
					ENG. APPROVED				AIL ALIC	
					ENG. MANAGER					
					PROJECT MANAGER					
DESCRIPTION			CKD	APP	CLIENT APPROVED			CJVP10007-DW		
ļ	5 6		•	7		8		9		

				DRAWN	D. SMITH	07.10.11		-
	MASTER COPY			DRAFTING CHECK				₽₽₽₩
				DESIGNER				LPHA C
				ENG. APPROVED				
				ENG. MANAGER				ELOCII SFI YANI
				PROJECT MANAGER				
DESCRIPTION			APP	CLIENT APPROVED			CJVP10007-I	DWG-C
	5 6		7		8		9	